ризовать угловой скоростью, с которой движутся все его точки. Поэтому будем называть ее угловой скоростью тела. Из формул (115.1) и (115.2) видно, что при вращении твердого тела линейные скорости его точек и их центростремительные ускорения пропорциональны расстоянию от этих точек до оси вращения.
?115.1. Две точки движутся с одинаковыми угловыми скоростями по окружностям, радиусы которых относятся, как 1:2. Найдите отношение ускорений этих точек.
115.2. Что больше: угловая скорость вращения часовой стрелки часов или угловая скорость вращения Земли?
§ 116. Силы при равномерном движении по окружности.
В § 27 мы показали, что равномерное движение по окружности есть движение с постоянным по модулю ускорением, направленным к центру окружи ости. Но ускорение тела всегда обусловлено наличием силы, действующей в направлении ускорения. Значит, для того чтобы тело равномерно
двигалось по окружности, на него должна действовать сила, постоянная по модулю на всей окружности и меняющая свое направление так, что она все время остается направленной к центру окружности.
В самом деле, во всех случаях равномерного движения тела по окружности мы можем обнаружить такую силу, действующую со стороны какого-либо другого тела. При вращении шарика на нити — это сила натяжения, действующая со стороны растянутой нити на шарик; ее легко обнаружить, привязав нить другим концом к динамометру (рис. 182); при движении шарика по круговому желобу или при движении поезда по закруглению пути — это сила реакции, действующая со стороны деформированного желоба на шарик или деформированного рельса на колеса поезда, направленная к центру дуги окружности, по которой движется шарик или поезд; в случае движения планет вокруг Солнца — это сила притяжения к Солнцу.
Если действие силы прекращается (например, обрывается нить, к которой привязан шарик), то исчезает и центростремительное ускорение: дальше шарик полетит по каса- далее 


Используются технологии uCoz